Diving into Mastery

Diving into Mastery Guidance for Educators

Each activity sheet is split into three sections, diving, deeper and deepest, which are represented by the following icons:

Diving Deeper

These carefully designed activities take your children through a learning journey, initially ensuring they are fluent with the key concept being taught; then applying this to a range of reasoning and problem-solving activities.

These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper' section and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are applying this to show their depth of understanding.

Aim

- Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.

Use your knowledge of multiples to help you solve these division questions:
$2564 \div 22=116 r 12$

		0	1	1	6	r12
2	2	2	5	6	4	
	-	2	2			
			3	6		
	-		2	2		
		1	4	4		
			1	3	2	
				1	2	

$1178 \div 21=56 r 2$

		0	0	5	6	$r 2$
2	1	1	1	7	8	
	-	1	0	5		
			1	2	8	
	-		1	2	6	
				2		

Solve these division word problems.
A train is able to fit 65 passengers into each carriage. How many carriages will the train need in order to carry 1428 passengers?
The train will need to have 22 carriages.
21 carriagef al the last will have
63 passen

		0	0	2	1	$r 63$
6	5	1	4	2	8	
	-	1	3	0		
			1	2	8	
	-			6	5	
			6			
				6		

A factory can pack 38 jars into a box. There are 3498 jars to pack. How many boxes can they fill with jars? How many will be left over?
92 boxes will be filled jars left over.

| | | 0 | 0 | 9 | 2 | $r 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 8 | 3 | 4 | 9 | 8 | |
| | - | 3 | 4 | 2 | | |
| | | | | 7 | 8 | |
| | - | | | 7 | 6 | |
| | | | | | 2 | |
| | | | | | 2 | |

Two children have been asked to solve this problem: $3390 \div 15$

Both boys are correct. Ben is correct because 3390 will divide by 30 and not leave a remainder. As 15 is a factor of 30,3390 will not leave a remainder when divided by 15. Devinder is correct because 3390 is divisible by 3 and 5, and because they are prime factors of 15, 3390 will not leave a remainder when divided by 15.

Use these division calculations to decide if the statements are always, sometimes or never true. Explain your reasoning.

If the dividend is a multiple of 5 and the divisor is a multiple of 5 , there will be no remainder.

Sometimes true. In $1950 \div 25$, both numbers are multiples of 5 and there is no remainder left. However, in $1855 \div$
15 , both numbers are multiples of 5 but no remainder left. However, in $1855 \div$
15 , both numbers are multiples of 5 but a remainder is left.

If the dividend is odd and the divisor is odd, there will not be a remainder.

Sometimes true. In $1015 \div 35$, both numbers are odd and there is no remainder. In $1855 \div 15$, both numbers are odd but there is a remainder of 10 . $1855 \div 15=$
$123 r 10$

Choose a four-digit number from the numbers below.
1632
is a multiple of 2,3 and 24 .
2808
1872
is a multiple of $2,3,9,18$ and 24.
is a multiple of $3,9,18$ and 24.

Which divisors from the table will not leave a remainder when you divide your number by them? Prove it.

Long Division 4

Dive in by completing your own activity!

Need Planning to Complement this Resource?

National Curriculum Aim

Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.

